Driving Interactive Graph Exploration Using 0-Dimensional Persistent Homology Features

نویسندگان

  • Ashley Suh
  • Mustafa Hajij
  • Bei Wang
  • Carlos Eduardo Scheidegger
  • Paul Rosen
چکیده

Graphs are commonly used to encode relationships among entities, yet, their abstractness makes them incredibly difficult to analyze. Node-link diagrams are a popular method for drawing graphs. Classical techniques for the node-link diagrams include various layout methods that rely on derived information to position points, which often lack interactive exploration functionalities; and force-directed layouts, which ignore global structures of the graph. This paper addresses the graph drawing challenge by leveraging topological features of a graph as derived information for interactive graph drawing. We first discuss extracting topological features from a graph using persistent homology. We then introduce an interactive persistence barcodes to study the substructures of a force-directed graph layout; in particular, we add contracting and repulsing forces guided by the 0-dimensional persistent homology features. Finally, we demonstrate the utility of our approach across three datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistent Homology Guided Exploration of Time-Varying Graphs

Topological data analysis is an emerging area in exploratory data analysis and data mining. Its main tool, persistent homology, has become a popular technique to study the structure of complex, high-dimensional data. In this paper, we propose a novel method using persistent homology to quantify the perturbation of features that occur in time-varying graphs. Specifically, we slice the graph data...

متن کامل

Structural Analysis of Multivariate Point Clouds Using Simplicial Chains

Topological and geometrical methods constitute common tools for the analysis of high-dimensional scientific data sets. Geometrical methods such as projection algorithms focus on preserving distances in the data set. Topological methods such as contour trees, by contrast, focus on preserving structural and connectivity information. By combining both types of methods, we want to benefit from thei...

متن کامل

Comparing Dimensionality Reduction Methods Using Data Descriptor Landscapes

Dimensionality reduction (DR) methods are commonly used in data science to turn high-dimensional data into 2D representations. Since data sets contain different structural features that need to be preserved by this process, there is a multitude of DR methods, each geared towards preserving a separate aspect. This makes choosing a suitable algorithm for a given data set a challenging task. In th...

متن کامل

Separating Topological Noise from Features Using Persistent Entropy

Persistent homology appears as a fundamental tool in Topological Data Analysis. It studies the evolution of k−dimensional holes along a sequence of simplicial complexes (i.e. a filtration). The set of intervals representing birth and death times of k−dimensional holes along such sequence is called the persistence barcode. k−dimensional holes with short lifetimes are informally considered to be ...

متن کامل

Persistent Homology for the Evaluation of Dimensionality Reduction Schemes

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding of the abstract data that retains relevant high-dimensional characteristics such as local distances between data points. Since the amount of DR algorithms from which users may choose i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.05548  شماره 

صفحات  -

تاریخ انتشار 2017